Zagreb Polynomials and Redefined Zagreb Indices for Chemical Structures Helpful in the Treatment of COVID-19

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Certain General Zagreb Indices and Zagreb Polynomials of Molecular Graphs

Chemical compounds and drugs are often modelled as graphs where each vertex represents an atom of molecule, and covalent bounds between atoms are represented by edges between the corresponding vertices. This graph derived from a chemical compounds is often called its molecular graph, and can be different structures. In this paper, by virtue of mathematical derivation, we determine the fourth, f...

متن کامل

The First and Second Zagreb Indices, First and Second Zagreb Polynomials of HAC5C6C7[p,q] and HAC5C7[p,q] Nanotubes

Topological indices are numerical parameters of a molecular graph G which characterize its topology. On the other hands, computing the connectivity indices of molecular graphs is an important branch in chemical graph theory. Therefore, we compute First Zagreb index Zg   <span style="font-family: TimesNewRomanPS-Italic...

متن کامل

Chemical Trees with Extreme Values of Zagreb Indices and Coindices

We give sharp upper bounds on the Zagreb indices and lower bounds on the Zagreb coindices of chemical trees and characterize the case of equality for each of these topological invariants.

متن کامل

Comparing the Zagreb Indices

Let G = (V,E) be a simple graph with n = |V | vertices and m = |E| edges; let d1, d2, . . . , dn denote the degrees of the vertices of G. If ∆ = max i di ≤ 4, G is a chemical graph. The first and second Zagreb indices are defined as M1 = ∑

متن کامل

Zagreb, multiplicative Zagreb Indices and Coindices of ‎graphs

‎Let G=(V,E) be a simple connected graph with vertex set V and edge set E. The first, second and third Zagreb indices of G are respectivly defined by: $M_1(G)=sum_{uin V} d(u)^2, hspace {.1 cm} M_2(G)=sum_{uvin E} d(u).d(v)$ and $ M_3(G)=sum_{uvin E}| d(u)-d(v)| $ , where d(u) is the degree of vertex u in G and uv is an edge of G connecting the vertices u and v. Recently, the first and second m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scientific Inquiry and Review

سال: 2020

ISSN: 2521-2435,2521-2427

DOI: 10.32350/sir/2020/44/1281